Natural Majorization of the Quantum Fourier Transformation in Phase-Estimation Algorithms
نویسندگان
چکیده
We prove that majorization relations hold step by step in the Quantum Fourier Transformation (QFT) for phase-estimation algorithms considered in the canonical decomposition. Our result relies on the fact that states which are mixed by Hadamard operators at any stage of the computation only differ by a phase. This property is a consequence of the structure of the initial state and of the QFT, based on controlled-phase operators and a single action of a Hadamard gate per qubit. As a consequence, Hadamard gates order the probability distribution associated to the quantum state, whereas controlled-phase operators carry all the entanglement but are immaterial to majorization. We also prove that majorization in phase-estimation algorithms follows in a most natural way from unitary evolution, unlike its counterpart in Grover’s algorithm. PACS numbers: 03.67.-a, 03.67.Lx
منابع مشابه
Approximate Quantum Fourier Transform with $O(n \log(n))$ T gates
The ability to implement the Quantum Fourier Transform (QFT) efficiently on a quantum computer enables the advantages offered by a variety of fundamental quantum algorithms, such as those for integer factoring, computing discrete logarithm over Abelian groups, and phase estimation. The standard fault-tolerant implementation of an n-qubit QFT approximates the desired transformation by removing s...
متن کاملComputational Performance of Quantum Phase Estimation Algorithm
A quantum computation problem is discussed in this paper. Many new features that make quantum computation superior to classical computation can be attributed to quantum coherence effect, which depends on the phase of quantum coherent state. Quantum Fourier transform algorithm, the most commonly used algorithm, is introduced. And one of its most important applications, phase estimation of quantu...
متن کاملQuantum phase estimation with arbitrary constant-precision phase shift operators
While Quantum phase estimation (QPE) is at the core of many quantum algorithms known to date, its physical implementation (algorithms based on quantum Fourier transform (QFT) ) is highly constrained by the requirement of high-precision controlled phase shift operators, which remain difficult to realize. In this paper, we introduce an alternative approach to approximately implement QPE with arbi...
متن کاملMajorization in Quantum Adiabatic Algorithms
We study the Majorization arrow in a big class of quantum adiabatic algorithms. In a quantum adiabatic algorithm, the ground state of the Hamiltonian is a guide state around which the actual state evolves. We prove that for any algorithm of this class, step-by-step majorization of the guide state holds perfectly. We also show that step-by-step majorization of the actual state appears if the run...
متن کاملArithmetic Circuits for Multilevel Qudits Based on Quantum Fourier Transform
We present some basic integer arithmetic quantum circuits, such as adders and multipliers-accumulators of various forms, as well as diagonal operators, which operate on multilevel qudits. The integers to be processed are represented in an alternative basis after they have been Fourier transformed. Several arithmetic circuits operating on Fourier transformed integers have appeared in the literat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Quantum Information Processing
دوره 1 شماره
صفحات -
تاریخ انتشار 2002